Munroe – Week 2

Chapter 1

Chapter 1 focuses on understanding GIS analysis and better framing data to fit the needs of your map. This chapter’s structure gives us a bottom-up approach to GIS, starting with the basis of geographic features, as this shows us how our data will be represented. Mitchell talks through a few examples, such as discrete features, continuous phenomena, and features summarized by area. Further, he talks about the difference between vector and raster models. The vector model centers feature as “a row in a table, and feature shapes defined by x,y locations in space” and areas defined by borders represented as closed polygons. The raster model is different, displaying features as “a matrix of cells in continuous space.” Any part can be displayed using either model, but it’s important to be conscious of which will be more visually appealing to the viewer. Discrete features and data summarized by area as usually represented with the vector model, while continuous numeric values are defined using the raster model. Endless categories can be represented by either the raster or vector model. I’m already pretty familiar with coordinate systems, with experience from GEOG112, so this section was not of great need. Mitchell finishes the chapter by talking about understanding geographic attributes, specifically attribute values. He lists categories, ranks, counts, amounts, and ratios. Types are used to group similar things and can be represented using numeric codes or texts. Classes put the features in relative order when direct measures are complex. Counts and amounts are used to show total numbers, while ratios establish relationships between quantities, usually resulting in a percentage. This is all data-driven and extremely important, as maps are just products of data. Mitchell finishes the chapter by talking about data tables, which helps us understand how to convey selected attribute values properly.Ā 

Chapter 2

Chapter 2 begins by mentioning the means by which you’re making your map. This reminds me once again of GEOG112 and KryKrygier’smic book regarding the information and audience your map needs to have to be successful and engaging. Mitchell progresses to the basics of making your map, starting with mapping a single type, where you draw all features using the same symbol. Then, he moves on to mapping by category, where you draw features using a different symbol for each category value. Mitchell makes a point that when choosing how many categories to project, itā€™it’sportant to look at the visual appeal of each map with its scale to judge which would be better for your audience. If you have over seven categories, it may be useful to summarize certain categories to fit together, as to not distract the audience or deter away from the meaning of the map. If youyou’reing symbols to display categories, itā€™it’sso important to prioritize colors over symbols, as colors are more effective to be visualized and grouped together. For example, when showing maps that have distinct categories like soil and geology maps, combining the projected features with their prospective color to a two-or-three letter code can help the viewer better see the projection, even with an included table showing the values. The same goes for implementing reference features into the map. The ultimate goal with mapping information clearly is for the viewer to recognize and establish patterns. This helps prove the data that youyou’vepped and shows that youyou’vepped something meaningful and necessary. It should be clear and evident with what youyou’reying to prove to the audience. My goal throughout this course when using ArcMap will be centered around this point, as I want my work to be successful, evident and clear with useful information being pulled from the data visualized on the map.

Chapter 3

Chapter 3 is focused on quantitative data, as mapping the most and the least helps us compare relationships between places. This helps show where help, intervention or policy is needed or of least concern. One way to do this is by shading. The darker an area, the higher the quantity of data is being reported from that location. To do this, data is summarized, usually using ratios, and set into categories with the highest percentage being darker in value versus the lowest being lighter in value. Mitchell speaks specifically on the purpose of the map, begging the question if youyou’reploring the data or presenting a map. If youyou’reploring data, youyou’retively looking for patterns and relationships versus presenting a map where you already know the pattern and relationship youyou’reying to prove. Keeping this in mind will help you build and promote a map of true purpose. Mitchell then dives back to the first chapter, recapping on quantitative data being interpreted as counts and amounts, ratios or percentages, each specific in their own characteristics and useful for differing scenarios. The chapter then turns to creating classes, specifically how to group your data to represent values accurately and efficiently. Once youyou’veeated classes and a corresponding legend, choosing an appropriate color scheme is necessary as it will help put the spotlight on your data. As mentioned before, higher percentages being darker and lower percentages being lighter is a recommended option. Mitchell mentions natural breaks, quantile, equal interval and standard deviation. Further, he mentions the different options to show quantities like graduated symbols, graduated colors, charts, contours and 3D perspective views, each is very specific and Mitchell dives into each to show the accurate ways of using them to show data. Itā€™It’sportant not to go overboard, though, because you still want the viewer to be able to comprehend the data easily and come away from the map with the accurate interpretation and information.

Chapter 4

Chapter 4 turns to mapping density, in particular how to show where certain objects or data are concentrated which is great for census tracts or counties varying in sizes. Mitchell recommends starting with the question ā€œDo”you want to map features or feature values?ā€ D”nsity of features uses the example of locations of business, versus the features values which has an example of number of employees at each business location. The density will obviously shift, with more workers at certain locations and more businesses in another location. Because you want your map to be easy to comprehend, itā€™it’sportant to ask this question before beginning the process of making your map. Moving along, if you map by defined area, you create a shaded density map with area boundaries. If you choose to map by density surface, you create a map that almost looks like a weather radar, with density sprawling over area boundaries. To create these calculations, you first have to define and create categories. Relying on information from chapters 2 and 3, you can extrapolate your data to fit your tables and then take those quantities and create corresponding classes, specifically with a graduated color scheme. You can also create a density surface using GIS, where GIS calculates a density value for each cell in the layer which shows where point of line features are concentrated. To do this, you need information about cell size, search radius, calculation method and units. The cell size determines how coarse or fine the patterns will appear, while the search radius will construct how generalized the patterns in the density surface will be. There are two calculation methods you can use, the first being simple which counts only those features within the search radius of each cell while the weighted method uses a mathematical function to give more importance to features closer to the center of the cell and units will let you specify the areal units in which you want the density values calculated. You can also imply contours, but that makes the map more rigid and helps show the values of the legend easier. After completion, the density surface will replicate a weather radar map and can help the viewer find where the selected data is more likely to be found.

Steed – Week 2

Chapter 1

This chapter introduced readers to GIS analysis, the manners in which it can be applied, and the technical terms used to describe its functions. First, the author provided a clear definition of GIS analysis, and then described the five ways in which geographic data should be analyzed: (1) frame the question, (2) understand your data, (3) choose a method, (4) process the data, and (5) look at the results. Next, Mitchell distinguishes the various feature types, which includes discrete, continuous, and summarized features. These are important because they determine how to move forward with the given data (e.g., if we know our boundaries are discrete, then we know exactly where to pull our data points). Then, the author describes how each geographic feature can be modeledā€”through either vector or raster models. In addition, Mitchell defines map projections and coordinate systems, and explains how the shape of our globe impacts their applications. Finally, this chapter describes different attributes that characterizes data (e.g., categories, ranks, ratios, etc.).

Overall, I think this chapter was critical in understanding some of the jargon that has been used in the past here at Ohio Wesleyan that I have neglected to do more research about. Although the information in this chapter is definitely basic, I think by starting out with this advice with accompanying examples, I will find it easier to understand the ArcGIS application.

Chapter 2

This chapter explains the importance of mapping and discloses strategies that can be utilized to best represent data through map design. First, the author specifies that mapping can be used to analyze where action needs to occur in a geographic space, to explore the causation of (an) event(s), or to search an area for a specific criterion. Then, Mitchell mentions the necessary steps to prepare data for mapping. He stated that users need to ensure that geographic coordinates and category values (if needed) are assigned to each feature. If not, Mitchell indicates that there a variety of issues that could occur. Next, Mitchell articulates how GIS works in creating a map for both single and categorical features that are prescribed by the users. In addition, the author provides tips for users to make their map as clear as possible to audiences. Finally, Mitchell discusses how to analyze geographic maps to look for patterns. He clarifies that pattern formation is one of the critical pieces of creating a map, so it is important that these steps are followed successfully.

As suspected, this chapter added to what we just learned from the first chapter. For example, Mitchell consistently reverberates terms such as ā€œcontinuousā€ and ā€œraster,ā€ which were just defined in the first chapter. Additionally, this section gave great guidance to avoid mistakes when creating maps. For example, he said ā€œif youā€™re showing several categories on a single map, youā€™ll want to display no more than seven categories,ā€ and also, ā€œif the pattern are complex or the features are close together, creating a separate map for each category can make patterns within a particular categoryā€”and even across categoriesā€”easier to see.ā€ Not only will these tips allow me to avoid making unnecessary mistakes, but also it creates a better understanding of why there are specific tasks that users need to make.

Chapter 3

This chapter focused on mapping intervals of values and explained which methods of mapping are necessary based on the type of feature. First, the author examined the importance of graphing maps with varying quantities and reverberated some of the information that was discussed in chapters 1 and 2 (specifically, discrete, continuous, and summarized features). Next, Mitchell defined the various quantities like counts and amounts, ratios and ranks. Then, he begins to explain how these quantities can be divided into classes either manually or through the use of classification schemes. The four classification schemes he describes are natural breaks (jenks), quantile, equal interval, and standard deviation. Each of these class separation tools allow for geographers to better understand given data sets, but they must be used in the right manner. For example, natural breaks are good for mapping uneven data sets, but quantiles are not (they are known for comparing areas that are roughly the same size). Furthermore, Mitchell explains how to deal with outliers in data sets and defines the differences between various map types for understanding discrete, continuous, or summarized areas. Finally, the author describes how users should be able to visualize patterns in their maps, and how to make it clearer for their audiences.

Although this reading bares some similarities between chapters 1 and 2, the author was able to provide guidance for why and how classes should be assembled for a given data set. In addition, it was able to differentiate between different map types, which is useful for when I apply this knowledge to the ArcGIS application. I am curious how the author will be able to build from this to describe map densities in the next chapter without reverberating the same information.

Chapter 4

This chapter describes the importance of density maps and explains how to create the two distinct types: (1) by defined area and (2) by density surface. First, as the previous chapters, he reverberates some of the primary information for why you should have an objective in mind when creating maps of any kinds. However, he describes that for density maps, they are ā€œuseful when mapping areasā€¦which vary greatly in size.ā€ Then, the author describes in greater detail the two distinct types of density maps. He says, map density by area when ā€œyou have data already summarized by area, or lines or points you can summarize by area.ā€ On the other hand, Mitchell states to create a density surface when ā€œyou have individual locations, sample points, or lines.ā€ Then, he goes into broader detail about each type with how each are calculated, displayed, and finally analyzed.

Honestly, I found this section to be a little redundant, but I understand its importance. Without a firm understanding of density maps, thereā€™s a lot of data that cannot be properly analyzed. In addition, this sort of mapping is commonly what I see when I go to various databases. It is fairly easy to interpret, and from the sounds of it, pretty easy to map on your ownā€”if you know some basic math.

Luna – Week 2

Chapter 1 of the book really focuses on the basics of GIS. It firstly discusses the chapters of the book and the way that they are ordered so that they teach you to do the basic process that is followed in GIS. Next, this chapter works to make the reader understand geographic features. Firstly, the types of features are covered, including discrete features (features with real locations that can be specified), continuous phenomena (occurrences that are experienced and measured everywhere using locations with boundaries or random sample points), and features summarized by area (the measurement of the features within certain boundaries that apply to the whole area rather than a specific place). Then, the chapter talks about methods of modeling features. The first of these methods is the vector model, where each feature has its own table row and the shapes of these features are shown by their coordinate location on the graph. In the raster model, which is the second method, features are shown using cells in space. This part of the chapter also talks about map projections (shows locations of a spherical globe on a flat map) and coordinate systems (specify units that are for finding the features in a flat space). The next section discusses geographic attributes and the types of them, which are the continuous ones, including categories (groups) and ranks (orders), and the noncontinuous ones, including counts (number of features on a map), amounts (measurable feature quantities), and ratios (relationships between quantities). Finally, the last section covers the use of data tables, talking about the operations used including selecting, calculating, and summarizing. This chapter, as a whole, did a very good job of showing what GIS is all about and why it is needed using the types of features that it is used for to show its need.

Chapter 2 of the book is more about mapping and what goes into that process. The first part of the chapter says that it is important to map things because maps can either show what places meet the requirements, where the most action is needed, or why things are happening. The second part talks about how to decide what to map, firstly saying that the user initially needs to ask what information is actually needed when the analysis is done and how the map will be used. The third part covers how to prepare the data being used, which requires assigning geographic coordinates and category values. The next section of the chapter talks about actually making the map that all of this will be on. This part talks about mapping features of the same type using the same kind of symbol, GISā€™s purpose of storing the location as points or shapes, and mapping using feature subsets, which is said to be more common than using individual locations. Next, the books discussed mapping categories, saying that GIS works to store category values for each of the features in the data, making it able to display certain features based on their type. Symbols or colors can be used to differentiate these groupings but the book instructs the user to be careful because too many colors or symbols can make things confusing. This section also suggests that the user use reference features, or landmarks to make it more meaningful to people. Finally, the last section of this chapter discusses interpreting patterns that can be seen in maps. This chapter is a very digestible introduction to actually being able to do things in GIS. While the first chapter talked a lot about the history and use, this one left me feeling better prepared for using the program.Ā 

Chapter 3 is about mapping the most and least, which is said to be useful because it can assist in finding data points that fit in the needed criteria. In order to do this, the values need to have quantities assigned to them, which can be assigned to discrete features, continuous phenomena, or information summarized by area. The next section of this chapter covers the quantities and actually understanding them by more deeply explaining counts, amounts, ratios, and ranks. After this, the book talks about grouping the quantities together into classes, which is said to be particularly useful when it comes to some kind of public presentation because it allows easy comparisons. The text points out that while charting individual values is more accurate as a whole while also allowing raw data patterns to be seen, it is much more effort. Classes, on the other hand require less effort and can be either made manually (when using specific criteria or specific comparisons) or by a standard classification scheme (when grouping to search for patterns). The classification schemes, that are chosen by determining how data is distributed, include natural breaks (finds inherent patterns in data to separate based on those), quantile (each class has the same number of features), equal interval (each class has the same data range), and standard deviation (classes are defined by their distance from the average). This part also talks about outliers and deciding how many classes to use. Lastly, this chapter teaches the reader how to actually make a map using graduated symbols or colors, charts, contours, and 3D views, while also explaining how to effectively use each of those components. This chapter really helped me understand the different ways to interpret data when it comes to GIS, which is different from the past two chapters and will help me when making maps.

Chapter 4 covers the topic of mapping density, and therefore concentrations, of features, which is helpful in recognizing patterns. This chapter talks about how to decide what to include in the map, which requires knowing what kind of data is being used and what kind of values need to be included, meaning either locations or features of the locations. There are two ways to map density. The first uses features summarized by area and should be used when there is previously summarized data or defined borders while the second includes making a density surface using the GIS and should be used when looking for the concentration in features. Next, this chapter talks about how to map density in defined areas, which can be done by finding a density value for those areas, making a map with dot density, or asking the GIS to summarize the features. Lastly, this chapter explains how to create a density surface. The GIS defines an area based on the radius that the user specifically determines, counts the number of those features in that circle, and divides that counted value by the area of the circle. The way that the GIS determines this relies on multiple factors, including cell size (the coarseness of the patterns), search radius, calculation method (either simple or weighted) and units. The density surface is then displayed with contour lines, which connect equal density points on that generated surface, or graduated colors, which can either be used by creating custom ranges or commonly used classification schemes. Finally, the user must view and interpret the result, which mainly involves finding patterns that depend on what kind of density surface was made. This chapter was a bit more confusing for me, but still helped me to further my understanding in the topic of GIS, especially once I get to do it for myself.

Mazabras-Week 1

My Name is Carl Mazabras and I am a Geography Major with a Business Minor. I am from New Canaan Connecticut which is 45 minutes outside of NYC. I am on the lacrosse team here at OWU and along with playing lacrosse some of the things I like to do are fish, work, play video games and spend time with my buddies. I have been interested in GIS ever since I took my first class with Dr. Rowley and have even completedĀ  a couple of GIS projects throughout my years here at OWU.

Throughout the reading I was able to see a lot of similarities in the breakdown of GIS with how the software works on the computers. The one area that stood out to me was the different layers we are going to have while creating the maps. The three visible layers in the first chapter are land use, land parcels and streets which is very similar to ARC GIS. Last year in the 112 class with Dr. Krygier we did a state population map with many different layers. Those layers consisted of roads, county boarders and state outline. Each of those layers were shown in the hot bar on the left first of the GIS software which could all be turned off or on it just depended on what we wanted to portray.Ā  To me this chapter is a great start because it really explains how the software will work without really telling you this is how the software works. I feel that people without any knowledge of ARC GIS will see the relationship from the book when they start to work in ARC because the entire software is based around layers that can be turned off and on to show different maps without changing the area being mapped. Layers can be showing different data or you can even put the layers into a timeline and show the history of an area. In 112 we had 12 layers each layer was in intervals of 10 years and the data linked to each year was the population for that county. We were able to show the population change and growth in the last 120 years working on one map with a ton of different layers.

You can use GIS to map out areas for potential solar farms and I have a huge interest in renewable energies so this would be right up my ally. You can use drones to get perfect pictures of the buildings or areas that you want to put solar down. Below I have a map of solar insolation which is showing the wattage of energy that is hitting in the colored area red being high and blue being low. Another way you can use GIS is to map an area for construction to see what the land is made of by doing soil composition testing which has been done a larger scales but not yet done at a small scale like a singular property or block.

McConkey – Week 1

Hi, my name is Jay McConkey. I’m from Cambridge, Ohio and I am a senior and an Environmental Science and Geography major. My academic interests include GIS, remote sensing, mycology, and plants. My other interests include reading books or manga and running. I have recently started a crochet kit, so maybe I’ll develop a new hobby this year. It’s been a while since I’ve taken a GIS class so through the course I will be brushing up on my previous GIS skills while aiming to master new ones as well.Ā 

Having experience with ArcMap, I wondered how the author would describe GIS to the unfamiliar. The opening passage surprised me as the reading begins expanding on the uses of GIS and how it is utilized by many people in many ways. I honestly didn’t know that Starbucks credits its success to the use of GIS software, but it doesn’t surprise me given the scope of what can be done using GIS. This makes me ponder other potential uses for GIS, other than the examples Schuurman describes (landscape architecture, surveying, ect.).Furthermore, it is interesting to read about the origins of GIS and how at the early stages the biggest limitation was technology. Given how much computing power has improved in the last couple of decades, it is no surprise to see the scope of GIS advance just as much The origins of GIS are framed just as interestingly. I had no idea just how messy the origins actually are, but I really like Schuurman’s analogy of GIS to a calculator. It makes sense since modern GIS has some many tools and built-in calculations, but you still have to know which calculations to use and when. The fact that these techniques are more accessible, broadens their potential application.

One aspect of GIS that is brought up is the power of imagery. Schuurman states that GIS commonly refers to ‘geographical information science’ as well as ‘geographical information systems.’ I feel like, at this point, GIS is so complicated and involved in so many sciences that it is impossible to fully define in a single sentence. Schuurman elaborates on this later in the readings when she states that GIScience is used to provide justification for GISystem functions. Schurrman also talks about how GIS digitizes physical data which is therefore manipulated in a way that the user interprets the world. This reminds me a great deal of one of my first GIS assignments given by Dr. Rowley. He had us use remote sensing to classify a GIS satellite footprint as disturbed and undisturbed land. We all classified our maps slightly differently according to our own personal biases. This made each of our maps slightly, or wildly different and showed us how GIS data is interpretable. Furthermore, emphasis is placed on the importance of visuality and how humans use visuals to comprehend concepts or statistics. The subject of colors, textures, and symbols in map-making is fascinating to me and is something I would like to learn more about.Ā Another interesting inclusion that Schuurman describes as an interest of GIS users is whether GIScience is inherently gendered. This fascinates me, because I do not fully understand how a geographical system could be gendered, but I have a feeling it stems from past geographers who are mostly male.

GIS Applications:

The first GIS application I looked into was ground penetrating radar, which is used for archeological studies. The source I found described a new processing tool, which automates certain processes and identifies anomalies. With the ground penetrating radar and GIS, the team was able to analyze buried structures. The image below is an Ancient Roman theatre that is currently underground.

One of my academic interests is mycology, so I looked up related GIS applications with fungi and found a study using GIS to assess the distribution of fairy rings. Overall I found the study interesting and I hope to come across more research that uses GIS to study fungi. The picture below was taken from an airplane and includes the fairy rings are identified.

 

 

 

file:///Users/jaymcconkey/Downloads/remotesensing-14-03459-v2.pd

https://www.sciencedirect.com/science/article/pii/S1754504821000027

VanderVelde – Week 1

Hello,

My name is Evelyn VanderVelde, I am a senior majoring in Environmental Science with a minor in Botany. I hail from Holland, Michigan, and part of Zeeland, Michigan as well (duel households for the win).

In Chapter 1: “GIS a short introduction” by Schuurman, GIS is defined in many ways, primarily by what its intended use purpose entails. The research that uses GIS morphs the format to each individual user, so a city planner uses GIS much differently than a biological researcher. “It is not a piece of software, but a scientific approach to a problem.” The question of how to best use GIS is based on the question of “where” the data is and “how to encode” the data. GIS is also inherently visual in its applications which creates the importance of color and symbology within this new mapping field. “Visualization is used to manufacture meaning from data, through rendering it in image form. GIS incorporates ongoing research into geographic visualization but, more to the point, it is based on the very principles that have recently brought scientific visualization to the fore” (Schuurman, 8) It’s also stated that people reason much better with visuals than with other types of data that is more numerical or literary. I found this interesting as previously in my other GIS class we always focused on having visually enticing and simplistic in its interpretation for all types of viewers, but I don’t think any definition like this was brought up. It makes a lot more sense to me as to why the visual components of my maps on GIS were so heavily stressed previously.Ā  The blurred boundary between definitions of GIS is confusing for me as well as there is no set criteria for which I should create my maps. This conflict though could be helpful as it gives more liberty artistically.

  • Geomorphologist: studies how the earth’s surface is formed and changed by rivers, mountains, oceans, air, and ice. The study of the land around us.
  • ESRI = Environmental Research Systems Inc.

GIS Applications:

Source: https://developers.arcgis.com/python/samples/detecting-swimming-pools-using-satellite-image-and-deep-learning/

Source for python:https://pythonapi.playground.esri.com/portal/home/item.html?id=2f8f066d526e48afa9a942c675926785

For this link, I looked up swimming pool detection and found this link via the ArcGIS developers themselves. I was given the coding to add swimming pool detection to my maps and the infrared needs in order to be able to label uncovered pools in residential areas. The image to the left shows multiple images that were used to train the ArcGIS system in finding swimming pools in residential areas.

Chlebowski – Week 1

Howdy!

My name is Gabriel Chlebowski and I am a junior zoology and environmental science major from Toledo, Ohio. Some of my interests include animal behavior, geography, music, sports, and kayaking. GIS has always been super fascinating to me since I have always loved maps growing up, so I am very curious about this course to see if my knowledge of the discipline can be expanded upon šŸ™‚

One of my favorite sections of Chapter 1 was explaining the human condition that it is easier for people to discern information through visual displays like maps as opposed to more textual approaches of displaying information like in tables.Ā  They point to a pretty straightforward but also slightly comical example of showing tuberculosis rates in a table format with percentages next to state zip codes. As strange as it sounds, without mapping software or a skilled cartographer, such data would be left in that format, which is very indigestible in my opinion.Ā  In addition, I did not know that not only do people “reason” using images, but such is processed differently in the brain that text. I think that the way that data can be processed via images is very special and really gives GIS great purpose in the realm of data analysis. This was especially true in the example of John Snow’s Cholera maps, a story in which I found extremely fascinating. The data by itself was not ample enough to draw any conclusions in where the source of the sickness arose, yet the use of mapping allowed Snow’s intuitions to lead him to the holes in the data, allowing for follow-up questions to reveal that the public wells were at fault. These types of stories are one of the many reasons why I find this type of data analysis so interesting. Maps can offer extreme amounts of information about a place or event that is much more in-depth and layered (pun) than a table with a contextual description. It takes extreme care and large amounts of precision to work the data into the visual in the correct fashion as to be the most presentable and apt as possible for the intended audience. Briefly mentioned in the chapter, the use of specific colors when discerning data is another way in which visualization can lead to more precise analysis, which is an area that extremely piques my interest.

 

The first of the two GIS applications I found was an older report on seagrass abundance monitoring in the realm of dugong population health. The map accompanied from it is very old (article published in 1993), but it is very informative on the locations of seagrass off of the coast of Australia. The subject area is of interest for me as I wrote a research paper on factors that negatively affect dugong population size, in which seagrass availability and quality were of the upmost importance. ļæ¼

An efficient method for estimating seagrass biomass – ScienceDirect

The second application is a type of online armadillo occurrence tracker called Armadillo Mapper (AM). This GIS tool automatically makes a range map of armadillos in the subparamo habitats of Peru based on user online input that shows on the map as potential occurrence. This is important to the knowledge of the hairy long-nosed armadillo (Dasypus pilosus), as their compiled map shows a larger range than the established one by the International Union for Conservation of Nature (green circle on both maps).

Armadillo Mapper: A Case Study of an Online Application to Update Estimates of Speciesā€™ Potential Distributions – Xiao Feng, Mariela C. Castro, Evan Linde, Monica Papeş, 2017 (sagepub.com)

Sources:

Feng X, Castro MC, Linde E, Papeş M. Armadillo Mapper: A Case Study of an Online Application to Update Estimates of Speciesā€™ Potential Distributions. Tropical Conservation Science. 2017;10. doi:10.1177/1940082917724133

Long, B. G., Skewes, T. D., & Poiner, I. R. (1994). An efficient method for estimating seagrass biomass.Ā Aquatic Botany,Ā 47(3-4), 277ā€“291. https://doi.org/10.1016/0304-3770(94)90058-2

ā€Œ

Bechina – Week 1

Hello! My name is Lily Bechina. I am a freshman environmental studies major. I am from Chicago, Il. I became interested in the environment over covid lockdown. I found the effects from everyone staying indoors (very little travel) for a year very interesting. I went on to take an environmental studies class my senior year of high school and really enjoyed it.Ā 

Schuurman ch.1 Response

I found the reading from Schuurman very interesting. I really didnā€™t know anything about GIS and how it works so the reading was very helpful in understanding what we will be working with in this course. Although the diction could get technical at times, I still understood what I was reading and was able to take a lot away from it. The comparison made between GIS and calculators helped me to understand the uses and benefits of GIS technology. GIS must be used with an understanding of what is being modeled and how it is being done to be used properly.Ā 

Learning about how people use GIS differently and see different purposes/functions for it was eye opening to how complex the technology really is. I enjoyed reading about how GIS technology allows for unspecific data to be utilized and interpreted.Ā Ā 

For GIS being such an intricate piece of technology, it produces something that people form their opinions off of in a more abstract way. Schuurman describes it as ā€œunscientificā€ while also pointing out that forming opinions based on the visual aspect is supported by some researchers.Ā 

Although this is a small detail, I appreciate the author using the word ā€œshe,ā€ when making a statement about GIScientists in general. The author is a woman herself, but it honestly caught me by surprise. Furthermore, I enjoyed the mention of GIScientists’ questioning if the technology is gendered and even touching on the social side of GIS technology. That dynamic is something I would love to learn more about.

Reading about GIS as a language that is much harder to understand and use than the English language helped me to see more of what exactly GIS technology has to offer. It honestly made me somewhat nervous about my own use of GIS because learning and understanding a new language is not quite easy.Ā 

GIS Applications

One GIS application I found is for disaster management. Technology is used to study disaster patterns over time. It helps to understand the ways in which certain areas of land are impacted by disaster and better help to reduce damage in the future.Ā 

Another GIS application I found is for water resources. This application helps to predict where pollution may come from. With that, the pollution can be hopefully avoided. It also helps to watch the flow of polluted water and infer what that water will go.

Sources:Ā 

Faisal, A., & Khan, H. (2018). Application of GIS and remote sensing in disaster management: A critical review of flood management. In International Conference on Disaster Risk Mitigation.Ā 

Tsihrintzis, V.A., Hamid, R. & Fuentes, H.R. Use of Geographic Information Systems (GIS) in water resources: A review. Water Resour Manage 10, 251ā€“277 (1996). https://doi.org/10.1007/BF00508896

Floyd Week 1

Hello, I am Keegan Floyd. I am a freshman planning on majoring in Genetics, with a possible double major (or at least a minor) in Data Analytics. I apologize for the picture; I put a mask on in 2020 and havenā€™t taken it off for the very few photographs taken of me since, so you get this picture of me hiding in my closet. I am taking GEOG 191 for two reasons; first, in an effort to broaden my academic horizons to see how different fields intersect with my chosen areas of interest; second, this is a useful skill set to have if I lean more into bioinformatics in my future career.

I found the first chapter of Schuurmanā€™s Introduction to GIS to be surprising, as my knowledge of GIS and geography, in general, was almost nonexistent before signing up for this class. I was not aware that a system designed for geography could intersect with so many other scientific fields, influencing large parts of my daily life through its importance in agriculture, urban planning, and healthcare. The uses of GIS in public health surprised me the most; it just never occurred to me that it is necessary to use geographical data to define and analyze health at the population level.

Ā I appreciated how much detail the chapter included on the two ā€œsectionsā€ of GIS: GIScience and GISystems; I believe that portion of the chapter deepened my understanding of the subject by showing how the two intersect via examples of both in day-to-day life. I am curious to see which of the two sides of GIS we learn more about in this course, though if I had to guess, it would be GIScience due to its position as the underlying theory behind GISystems.

This passage encouraged me to think about the applications of GIS within my major, which lead to my fascinating discovery of just how much population genetics relies on mapping systems to analyze data and predict research outcomes. This fact reassured me that this course will be beneficial in my future endeavors despite how different it is from my typical major-related classes.

This chapter opened my mind to the idea that GIS is not a simple information system, as the name suggests, but rather a broadly defined concept with more applications than could possibly be included in a single definition. I am looking forward to wrapping my head around this system throughout this course. Overall, this chapter has helped me gain a better understanding of what I need to know and what questions I need to ask to succeed in this course.

I used google scholar to look into the applications of GIS concerning genetics and came across an article about the use of GIS technology in landscape genetics. This article talks about utilizing GIS to map genetic variance in several different species across a large area to reach a level of visualization of data that was previously much harder to attain. These maps can be used to find patterns of gene flow within and across species.

My second topic of interest was GIS in relation to public health. I found an article discussing how GIS is particularly useful in the prediction of parasitic disease spread through the mapping of parasite appearances and the population density in an area. There is no accompanying map for this article.

Sources:Ā 

Fletcher-Lartey, S. M., & Caprarelli, G. (2016, February 2). Application of GIS technology in public health: successes and challenges. Parasitology, 143 (4), 401-415. Doi: 10.1017/S0031182015001869

Vandergast, A. G., Perry, W. M., Lugo, R. V., & Hathaway, S. A. (2010, August 16). Genetic landscapes GIS Toolbox: tools to map patterns of genetic divergence and diversity. Molecular Ecology Resources, 11 (1), 158-161. https://doi.org/10.1111/j.1755-0998.2010.02904.x

Munroe – Week 1

Hi! My name is Jonathan Munroe and Iā€™m a junior from St. Louis, Missouri. Iā€™m majoring in geography with a minor in music performance (violin). Iā€™ve taken quite a few classes regarding GIS but Iā€™m excited to take this course specifically on ArcMap. After graduation Iā€™d either like to work for a nonprofit urban planning agency doing neighborhood revitalization without displacement or work making maps out in the woods for the forest or national park service.

Schuurman Chapter 1- Introduction to GIS: I found this passage very interesting, as Iā€™ve read about the history of map-making and remote sensing but Iā€™ve never learned about the history of GIS. The program itself is so versatile and especially in todayā€™s age, itā€™s widely popular and sought after. As an example, last year when I worked at the Flying Pig I was talking about my major to a customer who worked for Nationwide in Columbus. He told me that if I got a degree or certificate in GIS I should come to him and heā€™d have a job ready for me. While insurance isnā€™t a field Iā€™m interested in, I think the story speaks volume and adds on to Schuurmans emphasis on how popular GIS has become in recent years. Another thing I found fascinating was his topic of visualization where he said ā€œvisualization is used to manufacture meaning from dataā€¦people are able to discern information from visual display with greater facility than from tables or printed text.ā€ Iā€™m a visual learner myself and think my love for maps stems from my availability to understand the data. Schuurman further proves his point by saying that ā€œpeople ā€˜reasonā€™ using imagery. GIS can better connect, market and convey any information, which is why itā€™s so sought after in the job market. This reading has made me excited to take this class through the semester and become more knowledgeable and familiar with GIS, helping me excel my research skills, resume and general knowledge.

For my map, I chose to look at the racial segregation of Cape Town, South Africa with the failure of the Group Areas Act of Apartheid. I chose this map because Iā€™m currently writing a TPG to visit Cape Town regarding racial housing segregation in comparison to the Red Line Policy of the United States. This map shows the racial composite of Cape Town using census data from 2011.