
Overview:

I did not get to create the two apps I wanted because the website would not let me upload/use
the data I was giving it. I tried multiple ways to upload this data, but none of them worked. What is
strange is that when I was experimenting previously in the semester, I had no issues. I didn’t change
the file format at all; the only change was that the data I was trying to use was a smaller subset.
Furthermore, the file I had uploaded previously in the semester (that worked) now does not want to
work either. I’ve checked my code multiple times, and nothing appears to have been corrupted in the
writing process. Since my data doesn’t want to load, I will summarize what both of my apps are
supposed to do.

Data Summary:

Number of Observations: 1,499,214

Date Range: 2001-2024

Variable List:

[1] "APN..PARCEL.NUMBER.UNFORMATTED."

[2] "APN.SEQUENCE.NUMBER"

[3] "ONLINE.FORMATTED.PARCEL.ID"

[4] "PROPERTY.INDICATOR.CODE...STATIC"

[5] "DEED.SITUS.HOUSE.NUMBER...STATIC"

[6] "DEED.SITUS.HOUSE.NUMBER.SUFFIX...STATIC"

[7] "DEED.SITUS.HOUSE.NUMBER.2...STATIC"

[8] "DEED.SITUS.DIRECTION...STATIC"

[9] "DEED.SITUS.STREET.NAME...STATIC"

[10] "DEED.SITUS.MODE...STATIC"

[11] "DEED.SITUS.QUADRANT...STATIC"

[12] "DEED.SITUS.UNIT.NUMBER...STATIC"

[13] "DEED.SITUS.CITY...STATIC"

[14] "DEED.SITUS.STATE...STATIC"

[15] "DEED.SITUS.ZIP.CODE...STATIC"

[16] "DEED.SITUS.COUNTY...STATIC"

[17] "DEED.SITUS.STREET.ADDRESS...STATIC"

[18] "DEED.SITUS.UNIT.NUMBER...STATIC.1"

[19] "SALE.AMOUNT"

[20] "SALE.DERIVED.DATE"

[21] "PRIMARY.CATEGORY.CODE"

[22] "DEED.CATEGORY.TYPE.CODE"

[23] "SALE.DOCUMENT.TYPE.CODE"

[24] "CASH.PURCHASE.INDICATOR"

[25] "MORTGAGE.PURCHASE.INDICATOR"

[26] "INTERFAMILY.RELATED.INDICATOR"

[27] "INVESTOR.PURCHASE.INDICATOR"

[28] "RESALE.INDICATOR"

[29] "NEW.CONSTRUCTION.INDICATOR"

[30] "SHORT.SALE.INDICATOR"

[31] "FORECLOSURE.REO.INDICATOR"

[32] "FORECLOSURE.REO.SALE.INDICATOR"

[33] "PARCEL.LEVEL.LATITUDE"

[34] "PARCEL.LEVEL.LONGITUDE"

[35] "PREDICTED.SALE.AMOUNT"

The data I was going to use was a subset of Core Logic data purchased for a research project.
The subset specifically comes from a set of data that details transfer information (this will be
important later). It covers all of Franklin County and includes all property types. Importantly, the data
has what is referred to (sometimes) as a “many-to-many” relationship. This means some parcels have
multiple observations (i.e., sales). Variables 1-3 are three different parcel number formats. Why didn’t I
just choose one? Because everyone formats data differently, and I had planned to use the parcel
numbers to cross-reference other data sets. For those who may not know, your parcel number is
unique. Variables 4-18 are all the chosen geospatial information about the property. Variables 19-20
are fairly straightforward; this is the observed sale price and date. Variables 21-32 are all the indicator
variables I chose (more on this later). Variables 33-34 are self-explanatory. They’re just another way to
identify property locations within ArcGIS. Finally, variable 35 is a variable I created that stores the
predicted sale price (more on this later).

App 1: Property Transaction Indicator

The first app I was going to create would use the indicator variables (21-32). Note: variables
19-32 were all the variables that would be visible. It was going to use an interactive legend so users
could quickly filter through information (see image below). Additionally, it was going to include an
option to filter by price ranges. I wanted to create this app so people could gain multiple insights into
home sales. For example, take Zillow; if you filter by sold properties, you cannot get more information
beyond when it was sold and the sale price. In contrast, my app would give you much more
information about the sale. This would allow users to see what types of sales are happening and
where they are most predominant.

Interactive Legend Example:

You may have noticed that the data above doesn’t include property characteristics (e.g., beds,
baths, square footage, etc.). This is on purpose because I had planned to use a data set from the
Franklin County Auditor's open data repository (link below). It outlines all the parcel boundaries and
includes basic property characteristics. Hence, I only needed to include this as my base layer for all
the basic property information (the same method is used for app 2).

Parcel Boundaries Data:

https://auditor-fca.opendata.arcgis.com/maps/3b1c75018fca40c8b24083fd48197e74/about

https://auditor-fca.opendata.arcgis.com/maps/3b1c75018fca40c8b24083fd48197e74/about

App 2: Predicted House Values

The second app was going to use the predicted house price variable (35). Note: variables 19,
20, and 35 were all the variables that would be visible. For context, the Franklin County auditor runs a
site where you can see your estimated home value (see image below). There is not much information
on how they got to these estimates, but it appears it uses some sort of weighted comparative analysis.
My evidence for this is limited, but if you look at the image, you can see the “Qualifying Sales” around
the subject property (for those interested, that’s COSI). I don’t know why they’d include this if they’re
not using those to arrive at some estimate. Additionally, if you look at the surrounding sales values
(see the link below if it is difficult to see), the estimate is clearly not derived from a simple average.

Property Link: https://auditor-fca.opendata.arcgis.com/maps/3b1c75018fca40c8b24083fd48197e74/about

Getting to my app, notice that the “Qualifying Sales” only range from 2020-2022, implying that
the property’s value comes from old sale data. I’m not here to critique the Franklin County Auditors'
forecasting methods, but this raises a few issues. Firstly, it is 2024, and they claim these values
represent 2023 home values (i.e., outdated). Secondly, if these are 2023 home values, why are they
using only 2020-2022 home sales? My app was going to fix these issues by providing a much more
accurate estimate of the home value. Additionally, it would provide the fair market value rather than
the appraised value. Which no one actually cares about (I’m just joking).

https://auditor-fca.opendata.arcgis.com/maps/3b1c75018fca40c8b24083fd48197e74/about

My model forecasted home prices using a supervised machine-learning algorithm. The model I
used is the hybrid particle swarm optimization (PSO) support vector machine (SVM) model or the
hybrid PSO-SVM model. Without getting too complicated, SVM is a classification method that attempts
to find a hyperplane that best partitions classes of points. However, SVM only works when data is
linearly separable. An easy solution is to apply a non-linear transformation to the data before using
SVM. For example, we could transform 1-dimensional data into 2 dimensions. This works in relatively
low dimensions, but scaling into higher dimensions significantly increases computational
requirements. Scaling into higher dimensions is almost always necessary since it affects how
sophisticated the decision boundary is (i.e., the support vector classifier). Additionally, the
transformation required is not always known. Therefore, a kernel function is used to solve these
problems simultaneously. The kernel function calculates the high-dimensional relationship of data
but without doing the transformation (I think that’s pretty cool). Subsequently, the kernel function
allows SVM to scale into higher dimensions without the computational strain of doing the
transformations. Mathematically, the implied transformation is often denoted 𝜙(∙) such that 𝜙 ∶
	ℝ! → 𝒟	, 𝑥" ∈ ℝ!, where 𝒟 is the dimension of the feature space and 𝑥" is some feature vector.
Different kernel functions can be chosen depending on the regression one wants to construct. I used
the Gaussian kernel or radial basis function (RBF) since it can project into an infinitely high-
dimensional feature space. The Gaussian kernel is defined as follows:

𝒦(𝑥, 𝑥") = 𝑒𝑥𝑝[−𝛾‖𝑥 − 𝑥"‖#]		,			𝛾 =
1
2𝜎#

Furthermore, in the context of SVM regression, we define the following optimization problem:

min
$,&,'∗

1
2
‖𝜔‖# + 𝐶?(𝜉" + 𝜉"∗)

)

"*+

subject	to I
(𝜔 ⋅ 𝑥") + 𝑏 − 𝑦" ≤ 𝜀 +	𝜉" 	,			𝑖 = 1,… ,𝑚
𝑦" − (𝜔 ⋅ 𝑥") − 𝑏 ≤ 𝜀 +	𝜉"∗	,			𝑖 = 1,… ,𝑚
𝜉"∗, 𝜉" ≥ 0	,																																			𝑖 = 1,… ,𝑚

where 𝜉" and 𝜉"∗ are slack variables, 𝐶 is the punishment coefficient, and 𝜀 is the error insensitive loss
function (i.e., soft margin). The slack variables measure the degree of misclassification (error) and
ensure that the soft margin constraint is satisfied for all points. The punishment coefficient controls
the magnitude of the penalty placed on points larger than 𝜀. The error-insensitive loss function
defines the soft margin (tube) size where misclassification is allowed. This leads to better overall
model performance. Finally, the parameter 𝜎 is the standard deviation of the Gaussian kernel and
controls the complexity of the decision boundary. The objective is to maximize the margin while
minimizing the amount of misclassification. Since the radial basis function (RBF) kernel can project
into an infinite-dimensional space, visualization is impossible. Therefore, I made a diagram that shows
a simplified example of what a support vector regression may look like using a polynomial kernel (see
image below). The red and blue circles represent two arbitrary classes of points.

Lastly, particle swarm optimization (PSO) is an optimization method developed by Eberhart
and Kennedy (1995). It is inspired by the social behavior patterns observed in bird flocking or fish
schooling. A group of particles (a particle swarm) is initialized, where each particle’s position
represents a potential solution. Each particle’s position is evaluated using a fitness function, which I
used the mean absolute percentage error (MAPE). Particles adjust their positions based on their
personal best solution (𝑃") and the global best solution (𝑃,). The algorithm repeats this evaluation and
updating process until the maximum number of iterations is reached or the fitness value is below the
error threshold (see image below). I used the PSO algorithm to tune the SVM hyperparameters 𝐶, 𝜀,
and 𝜎. My results yielded a MAPE of 0.096%. Therefore, the app was going to be far more accurate than
the auditors' site. Also, I think this is obvious, but the data set I mentioned above is not the one I used
to make these predictions. The set I used to make these predictions is much larger and has many more
variables. For perspective, it took two weeks to train the model (I did have to stop/start it multiple
times since I needed my computer for school) and a further 7-8 hours to calculate predictions (that
was able to finish overnight).

